Образовательный проект Леонида Некина

Учить АНГЛИЙСКИЙ, НЕМЕЦКИЙ по «Эхо»-технологии на тренажере «Бизон»:

попробуйте один раз — и по-другому Вы уже не захотите.

Поддержка бесплатно на все сто — нажать сюда!

Главная > Образование > Математика > МАТЕМАТИКА «С НУЛЯ» (учебник) >

<< Назад  |   Оглавление  |   Далее >>

3.13. Приближенные вычисления с десятичными дробями

Округление десятичных дробей

Разумеется, иметь дело с периодическими дробями очень неудобно. Зато их легко можно округлить с точностью до любого разряда. Округление производится по тем же правилам, по которым мы раньше округляли целые числа. Вот примеры округления до разряда сотых (или, как еще говорят, до двух знаков после запятой):

1 / 3 = 0,333333... ≈ 0,33;

2 / 3 = 0,666666... ≈ 0,67;

27 / 11 = 2,454545...  ≈ 2,45;

Округление до одного знака после запятой выглядит так:

1 / 3 = 0,333333... ≈ 0,3;

2 / 3 = 0,666666... ≈ 0,7;

27 / 11 = 2,454545...  ≈ 2,5;

А вот округление до разряда единиц, то есть до целых чисел:

1 / 3 = 0,333333... ≈ 0;

2 / 3 = 0,666666... ≈ 1;

27 / 11 = 2,454545...  ≈ 2;

Разумеется, округлять можно и непереодические дроби, если у них после запятой окажется слишком много «лишних» знаков:

1,23456789 ≈ 1,23.

Если в результате округления на месте последнего сохраняемого разряда оказывается ноль, то этот ноль принято выписывать явным образом:

1,201 ≈ 1,20;

1,199 ≈ 1,20.

Здесь, в обоих примерах, концевой ноль указывает на то, что округление производилось именно с точностью до двух знаков после запятой, а не до одного. Таким образом, если

a ≈ 1,20,

то, согласно правилам округления, это значит, что

1,195 ≤ a < 1,205.

А если бы мы написали, что

a ≈ 1,2,

то это бы означало:

1,15 ≤ a < 1,25.

Стандартное представление чисел

Давайте вспомним, как мы раньше округляли целые числа. Округление до двух значащих цифр могло выглядеть так:

123 456 789 ≈ 120 000 000,

А округление до пяти значащих цифр — так:

120 001 234 ≈ 120 000 000.

При этом по виду ответа никак нельзя было определить, сколько значащих цифр он содержит, иначе говоря, мы не могли ответить на вопрос, с какой точностью проведено округление. Теперь, познакомившись с десятичными дробями, мы можем сделать запись более информативной (а во многих случаях и более компактной):

123 456 789 ≈ 1,2 ∙ 108;

120 001 234 ≈ 1,2000 ∙ 108.

Здесь результаты округления записаны в так называемом стандартном представлении. В общем случае стандартное представление числа x имеет такой вид:

x = a ∙ 10n.

Здесь показатель степени n — это некоторое целое число, а первый сомножитель a представляет собой десятичную дробь, у которой все цифры являются значимыми, а абсолютная величина которой находится в пределах от 1 (включительно) до 10 (не включительно):

1 ≤ |a| < 10.

Десятичная дробь a называется мантиссой числа x, а n — его порядком. Вот еще два примера записи чисел в стандартном представлении:

−1,2 ∙ 106 = −1 200 000 («минус один и два на десять в шестой»);

1,05 ∙ 10−3 = 0,00105 («один-ноль-пять на десять в минус третьей»).

Если порядок n равен нулю, то сомножитель 10n можно опустить:

9,8700.

Заметим, что число ноль в стандартном представлении записать нельзя. Вместо этого пользуются обычной записью: 0 или 0,0.

Приближенное умножение, сложение и вычитание десятичных дробей легко сводится к соотвествующим приближенным операциям с целыми числами. Поэтому мы не будем подробно останавливаться на этой теме. Приведем только несколько примеров:

 

687,9 ∙ 0,267 ≈ 690 ∙ 0,27 = 69 ∙ 101 ∙ 27 ∙ 10−2 = 69 ∙ 27 ∙ 10−1 = 1863 ∙ 10−1 ≈ 1800 ∙ 10−1 = 1,8 ∙ 103 ∙ 10−1 = 1,8 ∙ 102.

 

61,238 + 0,345678 ≈ 61,2 + 0,3 = 61,5;

61,238 − 0,345678 ≈ 61,2 − 0,3 = 60,9;

 

7,6543 − 7,6457 ≈ 7,654 − 7,646 = 0,008.

Приближенное деление

Допустим, мы хотим найти результат деления

12345 / 6789

с точностью до двух значащих цифр. Для этого мы могли бы с помощью деления «уголком» вычислить первые три цифры ответа:

12345 / 6789 = 1,81... ,

а потом, по всем правилам, округлить результат до требуемой точности:

12345 / 6789 = 1,81... ≈ 1,8.

Но мы так делать не будем. Гораздо удобнее, прежде чем приступать к трудоемкой операции деления, сперва округлить делимое и делитель. При этом в каждом из них нужно сохранить столько значащих цифр, сколько их должно быть в ответе. В данном случае, должно остаться по две значащие цифры:

12345 ≈ 12000;

6789 ≈ 6800.

Почему именно так? Давайте вспомним о приближенном умножении. Мы знаем, что если его выполнять по всем правилам, то число значащих цифр у обоих сомножителей и у их произведения оказывается одинаковым. Мы знаем также, что пример на умножение

ab = c

легко превращается в пример на деление с теми же числами:

c / a = b.

Поэтому правило «одинакового числа значащих цифр» остается справедливым и в случае деления.

Итак, мы имеем:

12345 / 6789 ≈ 12000 / 6800 = 120 / 68.

Теперь выполняем деление «уголком»:

 

 1 

 2

 0

 6

 8

   

 

 6

 8

 1,

 7 

 6 

 

 5

 2

 0

 

 

 

 4 

 7 

 6

 

 

 

 

 4

 4

 0

 

 

 

 4

 0

 8

 

 

 

 

 3

 2

 

Отсюда:

12345 / 6789 ≈ 120 / 68 = 1,76... ≈ 1,8.

Мы получили в точности тот же ответ, что и раньше. Однако в общем случае ответы могут немного отличаться. Допустим, мы хотим получить частное от деления тех же чисел с точностью до одной значащей цифры. После округления точного результата деления ответ оказывается таким:

12345 / 6789 = 1,8... ≈ 2.

Если же мы вначале округлим делимое и делитель и только потом выполним деление, то ответ будет другим:

12345 / 6789 ≈ 10000 / 7000 = 10 / 7 = 1,4... ≈ 1.

Но подобные расхождения, как мы знаем, для приближенных вычислений — в порядке вещей.

Вычислим теперь следующее частное с точностью до двух значащих цифр:

1234,5 / 0,6789

Делается это так:

1234,5 / 0,6789  ≈округляем числитель и знаменатель≈

1200 / 0,68  =переписываем в более удобном виде=

120 ∙ 101 / (68 ∙ 10−2)  =«отсоединяем» степени десяти=

(120 / 68) ∙ 101 ∙ 102  =выполняем деление=

1,76... ∙ 103  ≈округляем≈

1,8 ∙ 103.

В общем случае, пусть x и y — произвольные десятичные дроби (y ≠ 0). Тогда их частное x/y вычисляется с точностью до k значащих цифр следующим образом.

Округлим каждое из чисел x и y до k значащих цифр и представим результат в виде

x ≈ a ∙ 10n,

y ≈ b ∙ 10m,

где a и b — такие целые числа, которые удобно делить друг на друга. Мы теперь можем найти их частное c, округленное до k значащих цифр:

c ≈ a / b.

Отсюда, результат деления x на y равен:

x / yс ∙ 10nm.

Из «бесконечного» сборника типовых упражнений

Примеры с десятичными дробями на приближенные вычисления, одно арифметичесое действие

То же, три действия

То же, пять действий

То же, пять действий (многоэтажная запись, LaTeX)

 

 

 

Вопросы и комментарии

18 ноября, 2016 - 21:22

ольга

вычислить 0,8(3)+0,1(6)

 Ответить  

19 января, 2014 - 22:54

диана

очегь красиво мне понравилось

 Ответить  

25 октября, 2013 - 03:25

Антон

Вопрос к редакторам сайта, тема будет развиваться? Если да, то когда к примеру выйдет раздел [3.14. Размерности]

25 октября, 2013 - 14:52

Леонид Некин

Леонид Некин's picture

У этого сайта нет редакторов, а есть только автор. Учебник математики я планирую продолжить дальше, но жестких временных планов у меня нет. Если у Вас есть вопросы - можете их задавать. Глядишь, на основе вопросов и ответов дело пойдет быстрее. Вы можете и сами написать интересующую Вас главу (нет лучшего способа учиться, чем самому писать учебники). Тогда я действительно из автора превращусь в редактора.

 Ответить