Образовательный проект Леонида Некина

Учить АНГЛИЙСКИЙ, НЕМЕЦКИЙ по «Эхо»-технологии на тренажере «Бизон»:

попробуйте один раз — и по-другому Вы уже не захотите.

Поддержка бесплатно на все сто — нажать сюда!

Главная > Образование > Математика > МАТЕМАТИКА «С НУЛЯ» (учебник) >

<< Назад  |   Оглавление  |   Далее >>

4.3. Угол между направлениями. Параллельные прямые

Для того чтобы мы могли определить угол между двумя лучами, они вовсе необязательно должны иметь общее начало. В самом деле, каждый луч, независимо от того, где он начинается, задает какое-то направление на плоскости, а различие между двумя направлениями характеризуется не чем иным, как углом — точнее говоря, угловым расстоянием или, с учетом знака, угловым смещением.

Рассмотрим лучи и с общим началом в точке O. Обозначим угол между ними через γ. Давайте, однако, договоримся, что здесь и далее в этих рассуждениях под «углом» мы будем понимать не угловое расстояние, а угловое смещение, которое может быть положительным или отрицательным.  Об этом на рисунках нам будет напоминать стрелка у дуги, обозначающей угол:

Пусть на луче OA между O и A задана произвольная точка A0, а на луче OB между O и B — произвольная точка B0. Очевидно, что угол между лучами A0A и B0B тоже равен γ, хотя на этот раз лучи исходят не из одной точки.

Этот угол мы могли бы найти и другим способом. Проведем через точки A0 и B0 прямую и отметим на ней точки A1 и B1, как показано на рисунке:

Измерим углы ∠A1A0A и ∠A1B0B и обозначим результаты наших измерений через α и β соответственно. Эти углы (а точнее — угловые смещения) отсчитываются от одного и того же направления, задаваемого лучом B0A1. Очевидно, что угол γ можно вычислить как

γ = β − α.

Пусть теперь на плоскости нам даны два произвольных луча B0B и A0A. Опираясь на предыдущие рассуждения, мы всегда можем найти угол γ между ними одним из следующих двух способов.

Первый способ. Восстановить исходные лучи до полных прямых, найти точку их пересечения и непосредственно измерить угол γ между подходящими лучами, начинающимися в этой точке:

Второй способ. Провести прямую через точки A0 и B0, измерить образовавшиеся углы α и β и вычислить угол γ по формуле γ = β − α.

Необходимо отметить, что второй способ работает всегда, а с первым способом могут возникнуть проблемы. Это случается, в частности, тогда, когда углы α и β в точности равны друг другу:

В этом случае угол γ, вычисляемый по формуле γ = β − α, обращается в нуль. А это означает, что прямые, восстановленные из лучей B0B и A0A, нигде не пересекаются.

 

Действительно, если бы они пересекались, то угол γ можно было бы измерить в точке пересечения непосредственно, но тогда он оказался бы отличен от нуля.

Пусть две несовпадающие прямые принадлежат одной плоскости и на них лежат лучи, угол между которыми равен нулю. Про такие прямые говорят, что они параллельны друг другу. Важнейшее свойство параллельных прямых заключается в том, что они нигде не пересекаются.

Вернемся к задаче о нахождении угла γ между двумя произвольными лучами B0B и A0A с началом в разных точках. Мы только что рассмотрели особый случай, когда этот угол равен нулю. Про лучи, угловое расстояние между которыми равно нулю, говорят, что они сонаправлены или параллельны. Возможен другой особый случай, когда угол γ, рассчитанный по формуле γ = β − α, оказывается равен 180° или −180°:

Такие лучи называются противонаправленными или антипараллельными. Несложно видеть, что прямые, восстановленные из этих лучей, параллельны друг другу и, таким образом, этот случай очень похож на предыдущий.

Постороение параллельных прямых

Пусть на листе бумаги начерчена некоторая прямая n и мы хотим провести другую прямую, параллельную первой. Делается это так. Совместим с прямой n одну из сторон чертежного треугольника. К другой стороне треугольника приставим линейку. Прочно держим линейку одной рукой и передвигаем треугольник другой рукой, скользя им вдоль линейки. После этого проводим линию по той стороне треугольника, которую первоначально мы приставляли к исходной прямой n. Новая линия образует тот же угол с линейкой, что и прямая n, а значит, обе линии параллельны друг другу.

Если мы хотим, чтобы новая прямая прошла через какую-то определенную точку, то мы всегда это может сделать, остановив скольжение угольника вдоль линейки в подходящем месте.